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Abstract
Background  Higher positive end-expiratory pressure (PEEP) during laparoscopic surgery may increase oxygenation 
and respiratory compliance. This meta-analysis aimed to compare the impact of different intraoperative PEEP 
strategies on arterial oxygenation, compliance, and hemodynamics during laparoscopic surgery in non-obese 
patients.

Methods  We searched RCTs in PubMed, Cochrane Library, Web of Science, and Google Scholar from January 2012 
to April 2022 comparing the different intraoperative PEEP (Low PEEP (LPEEP): 0–4 mbar; Moderate PEEP (MPEEP): 5–8 
mbar; high PEEP (HPEEP): >8 mbar; individualized PEEP - iPEEP) on arterial oxygenation, respiratory compliance (Cdyn), 
mean arterial pressure (MAP), and heart rate (HR). We calculated mean differences (MD) with 95% confidence intervals 
(CI), and predictive intervals (PI) using random-effects models. The Cochrane Bias Risk Assessment Tool was applied.

Results  21 RCTs (n = 1554) met the inclusion criteria. HPEEP vs. LPEEP increased PaO2 (+ 29.38 [16.20; 42.56] mmHg, 
p < 0.0001) or PaO2/FiO2 (+ 36.7 [+ 2.23; +71.70] mmHg, p = 0.04). HPEEP vs. MPEEP increased PaO2 (+ 22.00 [+ 1.11; 
+42.88] mmHg, p = 0.04) or PaO2/FiO2 (+ 42.7 [+ 2.74; +82.67] mmHg, p = 0.04). iPEEP vs. MPEEP increased PaO2/FiO2 
(+ 115.2 [+ 87.21; +143.20] mmHg, p < 0.001). MPEEP vs. LPEP, and HPEEP vs. MPEEP increased PaO2 or PaO2/FiO2 
significantly with different heterogeneity. HPEEP vs. LPEEP increased Cdyn (+ 7.87 [+ 1.49; +14.25] ml/mbar, p = 0.02). 
MPEEP vs. LPEEP, and HPEEP vs. MPEEP did not impact Cdyn (p = 0.14 and 0.38, respectively). iPEEP vs. LPEEP decreased 
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Introduction
Pneumoperitoneum (PNP) and the position of the patient 
required for laparoscopic surgery lead to pathophysi-
ological changes that complicate anesthesia [1]. PNP is 
characterized by an increased intra-abdominal pressure 
(IAP), the cranial displacement of the diaphragm that 
can lead to the formation of intraoperative atelectasis 
and decrease end-expiratory lung volume (EELV) [2, 3]. 
At the same time, PNP can reduce respiratory system 
compliance by 30–50% in healthy patients [4, 5]. Dur-
ing elective abdominal surgery under general anesthesia, 
atelectasis forms in almost 90% of patients [6] and can 
become a focus of postoperative pneumonia. And one of 
the methods to avoid the effects of PNP on lung tissue 
is to apply positive end-expiratory pressure (PEEP) [7]. 
PEEP is acknowledged as a component of lung protective 
ventilation (LPV) along with low tidal volume (TV) 6–8 
ml/kg [8, 9]. On the other hand, excessive PEEP can lead 
to the overdistension of lung tissue and cause volutrauma 
[10] and hemodynamic instability. It is necessary to use 
sufficient PEEP to minimize atelectasis, improve respira-
tory biomechanics and maintain oxygenation.

A recent systematic review and meta-analysis of inten-
sive care unit (ICU) patients without acute respiratory 
distress syndrome (ARDS) found no reduction in in-hos-
pital mortality or reduced ventilation duration in patients 
with higher PEEP levels. However, hypoxemia and ARDS 
occurred less frequently with higher PEEP (assessed 
by arterial partial oxygen pressure (PaO2) or PaO2/FiO2 
index) [11]. In a large observational study in non-obese 
general surgery patients, a PEEP of 5 cmH2O was identi-
fied as a protective factor associated with fewer postop-
erative pulmonary complications (PPL) [12]. In addition, 
zero PEEP was associated with worse outcomes, includ-
ing increased hypoxemia, ventilator-associated pneumo-
nia, and in-hospital mortality [13]. Just one systematic 
review and network meta-analysis suggested that indi-
vidualized PEEP combined with a recruitment maneuver 
(RM) may be an optimal ventilation strategy combined 
with low tidal volumes in abdominal surgery, but it 
uses a mixed population of laparoscopic and open sur-
gery patients [14]. A higher PEEP may be used in obese 
patients, as some studies indicate impaired respiratory 

biomechanics in this group of patients [15, 16]. Although 
low tidal volume has been recognized as a protective tool 
during surgery, RCTs comparing PEEP levels during lapa-
roscopic surgery have been small and shown conflicting 
results on the effects of PEEP on oxygenation, respiratory 
mechanics, and hemodynamic stability [14, 18, 19, 21–
38]. Not a single meta-analysis has examined the effect of 
PEEP on oxygenation, respiratory mechanics, or hemo-
dynamics in laparoscopic surgery neither in obese nor 
non-obese patients. So, the optimal level of PEEP during 
laparoscopic surgery without lung injury is still not clear 
and debatable. We conducted a systematic review and 
meta-analysis to compare the impact of different intraop-
erative PEEP strategies on oxygenation, compliance, and 
hemodynamic parameters during laparoscopic surgery in 
non-obese patients.

Methods
We performed a systematic review and meta-analysis 
following the Preferred Reporting Items for Systematic 
Review and Meta-analysis (PRISMA) [17]. The protocol 
for this meta-analysis was pre-registered to the Interna-
tional Prospective Registry of Systematic Reviews data-
base (CRD42022362379; registered October 09, 2022).

Search strategy
We searched RCTs in English, which studied the effect of 
different levels of PEEP on blood oxygenation, respiratory 
compliance, and hemodynamics in non-obese patients 
during laparoscopic surgery. The studies were found 
through electronic searches of the PubMed, Cochrane 
Library, Web of Science, and Google Scholar databases 
by two researchers who did not go through the details of 
the studies. We limited our review to studies published 
in the last ten years (January 2012 to April 2022) because 
intraoperative ventilation practices and interven-
tion techniques have changed over the past decade. All 
articles found on this platforms have been analyzed for 
relevance by title and abstract. For potentially relevant 
articles, full-text articles were obtained for analysis. From 
these articles, as well as from related reviews and meta-
analyses, all links and potentially relevant titles have been 
manually checked.

driving pressure (-4.13 [-2.63; -5.63] mbar, p < 0.001). No significant differences in MAP or HR were found between any 
subgroups.

Conclusion  HPEEP and iPEEP during PNP in non-obese patients could promote oxygenation and increase Cdyn 
without clinically significant changes in MAP and HR. MPEEP could be insufficient to increase respiratory compliance 
and improve oxygenation. LPEEP may lead to decreased respiratory compliance and worsened oxygenation.

Prospero registration  CRD42022362379; registered October 09, 2022.

Keywords  Positive end-expiratory pressure, PEEP, Laparoscopic Surgery, Lung protective ventilation, Compliance, 
Oxygenation, Non-obese, Pneumoperitoneum, Meta-analysis
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The following search terms or their combination were 
used during the search:

Keywords: (((((((((((((“Tidal Volume“[Mesh]) OR Tidal 
Volumes) OR Volume, Tidal) OR Volumes, Tidal))) OR 
((((((((((((((((((“Positive-Pressure Respiration“[Mesh]) 
OR Positive-Pressure Respiration) OR Positive-Pres-
sure Respirations) OR Respiration, Positive Pressure) 
OR Respirations, Positive-Pressure) OR Positive Pres-
sure Ventilation) OR Positive-Pressure Ventilation) OR 
Positive-Pressure Ventilations) OR Ventilation, Posi-
tive Pressure) OR Ventilations, Positive-Pressure) OR 
Positive End-Expiratory Pressure) OR End-Expiratory 
Pressure, Positive) OR End-Expiratory Pressures, Posi-
tive) OR Positive End-Expiratory Pressure) OR Positive 
End-Expiratory Pressures) OR Pressure, Positive End-
Expiratory) OR Pressures, Positive End-Expiratory))))) 
AND Randomized Controlled Trial[Publication Type]) 
NOT (((animals [Mesh] not (humans [Mesh] and animals 
[Mesh])))))))) AND laparoscopic.

Four researchers independently extracted data into the 
database developed for this dataset. Disagreements about 
data extraction were resolved through discussion.

Selection criteria
We included studies with the following PICOS criteria:

1.	 Population: non-obese adult patients who underwent 
general anesthesia with mechanical ventilation with 
tidal volumes ≤ 10 ml/kg during laparoscopic surgery 
in the past ten years.

2.	 Intervention: PEEP level during mechanical 
ventilation.

3.	 Comparison: the lung ventilation strategies were 
divided by PEEP levels according to most common 
stratification in the included studies: (low PEEP 
(LPEEP): 0–4 mbar; moderate PEEP (MPEEP): 5–8 
mbar; high PEEP (HPEEP): >8 mbar; individualized 
PEEP (iPEEP): PEEP set by special physiological 
technique - electrical impedance tomography or 
transpulmonary pressure).

4.	 Outcomes: Arterial partial pressure of oxygen 
(PaO2) or PaO2 to Inspiratory oxygen fraction ratio 
(PaO2/FiO2), dynamic respiratory compliance, mean 
arterial pressure, heart rate.

5.	 Study design: randomized controlled trial.
We eliminated studies that were not written in English, 
not in full-text format, and studies where mechanical 
ventilation with a laryngeal mask was used for general 
anesthesia.

Data extraction
The main goal was to compare the effect of different PEEP 
strategies on oxygenation and respiratory compliance in 
non-obese adult patients who underwent general anes-
thesia with mechanical ventilation during laparoscopic 

surgery. The secondary objective was to compare the 
effect of different PEEP strategies on heart rate and mean 
arterial pressure in non-obese adult patients undergoing 
general anesthesia with mechanical ventilation during 
laparoscopic surgery.

The oxygenation was assessed by intraoperative mea-
surement of the arterial partial pressure of oxygen 
(PaO2), or arterial oxygen partial pressure to fractional 
inspired oxygen (PaO2/FiO2) ratio) calculation. We eval-
uated respiratory compliance by dynamic compliance 
(Cdyn) or driving pressure (DP) measurements, taking 
into account that Cdyn represents not only the elastance 
of the respiratory system but also the airway resistance 
resulting from periodic recruitment/derecruitment of 
alveoli and small airways [18, 19]. The hemodynamics 
was assessed by noninvasive measurement of mean arte-
rial pressure (MAP) and heart rate (HR).

If data were available only in graphical format, Get-
Data Graph Digitizer 2.25 (http://getdata-graph-digitizer.
com/) was used to quantify the data.

Statistical analysis
Data analysis was performed using two software applica-
tions: Review Manager software (RevMan, version 5.4)” 
and Stata 17.0 (StataCorp, College Station, TX, USA). 
Pooled continuous outcomes were reported as the mean 
difference (MD) with 95% confidence intervals (CI), stan-
dardized mean difference (SMD). We used 95% predic-
tive intervals (PI) for the description of the true effect 
value within studies. A random effect model was taken 
due to the expected between-study heterogeneity. Het-
erogeneity was assessed using observed weighted sum 
of squares (Chi2), variance of the true effect size (Tau2), 
and the ratio of excess dispersion to total dispersion (I2). 
P value < 0.10 for Chi2 considered that the true effect 
varies. In order to check for the existence of publica-
tion bias, a funnel plot graph was designed in this meta-
analysis. Sensitivity analysis was performed by excluding 
one study at a time to analyze a possible chain of results. 
We used meta-regression for evaluation of the influence 
of tidal volume value and body position during surgery 
(Trendelenburg or reverse Trendelenburg) on study out-
comes, calculated test for residual homogeneity (Qres), 
regression coefficient, R2 for the proportion of between 
studies variance explained by the covariates, and drew 
bubble plots.

Quality assessment
The Cochrane Risk of Bias Assessment Tool (RoB 2.0) 
was used to assess the quality of the included studies 
in five domains: randomization process [D1], devia-
tion from intended interventions [D2], missing outcome 
data [D3], outcome measurement [D4], and selection of 
reported results [D5] [20]. In addition, each domain was 

http://getdata-graph-digitizer.com/
http://getdata-graph-digitizer.com/
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rated as high risk, low risk, or some concern using the 
Cochrane Criteria for assessing the risk of bias [20].

Results
Studies characteristics
A total of 90 unique studies were identified, of which 21 
RCTs published between 2012 and 2022 met the inclu-
sion criteria and were included in the study (Fig. 1). These 
RCTs included 1554 non-obese patients undergoing 
laparoscopic surgery at baseline and receiving mechani-
cal ventilation in volume-controlled mode with differ-
ent levels of PEEP. These studies aimed to evaluate the 
effect of different PEEP strategies on oxygenation (PaO2 
or PaO2/FiO2), Cdyn, MAP and HR during PNP in non-
obese subjects undergoing laparoscopic surgery. It should 
be noted that in the LPEEP groups, almost all studies 
used PEEP = 0 (zero end-expiratory pressure - ZEEP), 

with the exception of the study by Chun EH et al. [38], 
which used a PEEP of 4 mbar in the LPEEP group.

15 RCTs (n = 784) measured PaO2, 12 RCTs (n = 735) 
evaluated PaO2/FiO2, 12 RCTs (n = 935) measured Cdyn, 
17 RCTs (n = 974) MAP, and 16 RCTs (n = 862) HR. The 
types of procedures included laparoscopic cholecystec-
tomy, laparoscopic colon cancer resection, laparoscopic 
radical gastrectomy, laparoscopic gynaecologic surgery, 
robot-assisted laparoscopic radical prostatectomy, and 
robot-assisted gynaecologic surgery. Detailed baseline 
characteristics of the included studies are presented in 
Table 1 [14, 18, 19, 21–38].

In 17 RCTs (n = 607) non-obese subjects undergoing 
laparoscopic surgery during PNP received low PEEP, in 
19 RCTs (n = 667) moderate PEEP, in 9 RCTs (n = 202) 
high PEEP, and 6 RCTs (n = 118) individualized PEEP 
(iPEEP solved by a titration strategy).

Fig. 1  PRISMA flow chart of the included studies
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Evidence quality and the risk of bias
All the studies presented low risk in terms of random 
sequence generation (Fig. 2). Due to the completeness of 
the outcome data, the risks of attrition bias were likewise 
evaluated as low. Three trials did not provide informa-
tion on deviations from intended interventions [27, 32, 
38], and one trial had a high risk of deviation bias [33]. 
Four studies did not report the measurement of the out-
come [27, 32, 36, 38] and three studies showed a high risk 
of measurement of the outcome bias [21, 25, 33]. Three 
studies showed an increased risk of “selection of the 

reported result” bias [21, 26, 28] and four trials had some 
concerns [22, 23, 25, 36]. For details see Supplement 1&2.

Oxygenation
In included studies, the authors used different methods 
to evaluate the PEEP on oxygenation: some studies com-
pared the effect of the PEEP strategy on PaO2, while oth-
ers - on PaO2/FiO2.

The vast majority of studies used PaO2 as a method 
for oxygenation evaluation: 8 RCTs (n = 419) compared 
LPEEP and MPEEP, 4 RCTs (n = 192) - LPEEP and HPEEP, 
and 4 RCTs (n = 173) - MPEEP and HPEEP. Three of 

Fig. 2  Cochrane risk of bias assessment tool
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those 8 RCTs simultaneously compared LPEEP, MPEEP, 
and HPEEP. All data regarding PaO2 are described in the 
Supplement 1 since PaO2 is not a reliable measure of oxy-
genation without information on FiO2 (Fig. S1 - Fig. S7). 
In general, all comparisons (HPEEP vs. LPEEP, HPEEP 
vs. MPEEP, and MPEEP vs. LPEEP) showed an increase 
in PaO2 with different heterogeneity.

Meta-analysis of 4 studies comparing the influence of 
LPEEP vs. MPEEP (n = 465) on PaO2/FiO2 did not show a 
significant increase in PaO2/FiO2 (+ 42.25 (-10.73; 95.24) 
mmHg, p < 0.12). Also, the meta-analysis found high 
variability in true effect between studies (Chi2 368.31, 
p < 0.001). The distribution of true effect size was wide 
(T2 = 2702.15), and I2 99%, which can correspond to a 
high real proportion of true effect variation (Fig.  3a). 
Estimation of the prediction interval of true effect also 
showed a very wide distribution crossing zero line (Fig. 
S8). But we found high risk of publication bias (Fig. S9). 

A different picture was seen in the meta-analysis of 3 
studies comparing influence of LPEEP (all included stud-
ies used ZEEP) vs. HPEEP (all included studies used 10 
mbar) (n = 172) on PaO2/FiO2. It revealed a substantial 
increase in PaO2/FiO2 in HPEEP (PEEP 10 mbar) group 
(+ 36.7 (+ 2.23; +71.70) mmHg, p = 0.04) but did not 
find significant variability in true effect between studies 
(Chi2 2.33, p = 0.31). I2 was only 14%, corresponding to 
low real proportion of true effect variation, but the high 
proportion of sampling error (Fig. 3b). Estimation of the 
predictive interval of true effect also showed very wide 
distribution crossing zero line (Fig. S10). The risk of pub-
lication bias was low (Fig. S11). The meta-analysis of only 
2 studies comparing the influence of MPEEP vs. HPEEP 
(n = 98) on PaO2/FiO2 revealed a significant increase 
in PaO2/FiO2 in HPEEP group (+ 42.7 (+ 2.74; +82.67) 
mmHg, p = 0.04). We did not find variations in true effect 
between studies (Chi2 2.33, p = 0.31). Due to Chi2 being 

Fig. 3  Forest plot for PaO2/FiO2 comparing different PEEP strategy groups: (a) LPEEP vs. MPEEP; (b) LPEEP vs. HPEEP; (c) MPEEP vs. HPEEP; (d) MPEEP 
vs. iPEEP. Data are presented as mean differences and 95% confidence intervals. The vertical line represents no effect with the value of 0. The diamond 
represents the pooled mean effect estimate with 95% CI. It provides an overall measure of the difference in PaO2/FiO2 values between different PEEP 
strategy groups. Abbreviations: CI: confidence interval; SD: standard deviation; I2: the ratio of excess dispersion to total dispersion; Тau2: the variance of the 
true effect sizes; Chi2: observed weighted sum of squares; df: degrees of freedom; PaO2/FiO2: arterial oxygen partial pressure to fractional inspired oxygen 
ratio; LPEEP: low positive end-expiratory pressure group; MPEEP: moderate positive end-expiratory pressure group; HPEEP: high positive end-expiratory 
pressure group; iPEEP: individualized positive end-expiratory pressure group
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less than df, the variation of true effect size (T2) is zero. 
Almost all dispersion of PaO2 between MEEP and HPEEP 
can be attributed to sampling error (I2 = 0%) (Fig. 3c). The 
risk of publication bias was low also (Fig. S12). Two stud-
ies compared MPEEP (all studies used 5 mbar) with indi-
vidual PEEP (iPEEP) (n = 68) in a robotic pelvic surgery: 
one study used an esophageal pressure-guided setting of 
PEEP [34], while another was an electrical impedance-
guided PEEP. The meta-analysis of these studies showed a 
significant increase in PaO2/FiO2 in iPEEP group (+ 115.2 
(+ 87.21; +143.20) mmHg, p < 0.001). We did not find vari-
ations in true effect between studies (Chi2 1.35, p = 0.24), 
but high variation of true effect size (T2 = 220.17). Almost 
all dispersion of PaO2 between MEEP and iPEEP can be 
attributed to sampling error (I2 = 26%) (Fig. 3d). The risk 
of publication bias was high (Fig. S13).

Dynamic respiratory compliance and driving pressure
Most of the included studies (N = 10) measured dynamic 
compliance (Cdyn) for respiratory compliance evalua-
tion. Six RCTs (n = 746) compared LPEEP and MPEEP, 
four RCTs (n = 189) - LPEEP and HPEEP, and two RCTs 
(n = 64) - MPEEP and HPEEP. One of those RCTs simul-
taneously compared LPEEP, MPEEP, and HPEEP.

Meta-analysis of 6 studies comparing the influence 
of LPEEP (all included studies used ZEEP) vs. MPEEP 
(n = 746) on Cdyn did not show a significant increase in 
Cdyn in MPEEP group (+ 3.05 (-3.05; +7.08) ml/mbar, 
p = 0.14). Also, meta-analysis found high variability in 
true effect between studies (Chi2 91.22, p < 0.001). The 
distribution of true effect size was wide (T2 = 22.01), and 
I2 95%, which can correspond to a high real proportion 
of true effect variation (Fig.  4a). Estimating the predic-
tion interval of true effect also showed broad distribution 
crossing zero line (Fig. S14). We found a high risk of pub-
lication bias (Fig. S15).

On the opposite, the meta-analysis of 4 studies compar-
ing the influence of LPEEP vs. HPEEP (n = 189) on Cdyn 
revealed a significant increase in Cdyn in HPEEP group 
(+ 7.87 (+ 1.49; +14.25) ml/mbar, p = 0.02) with consider-
able variability in true effect between studies (T2 = 26.41, 
Chi2 13.95, p = 0.003). I2 was 79%, corresponding to a high 
real proportion of true effect variation (Fig. 4b). Estima-
tion of the prediction interval of true effect also showed 
extensive distribution crossing zero line (Fig. S16). The 
risk of publication bias was high (Fig. S17). The meta-
analysis of 2 studies comparing the influence of MPEEP 
vs. HPEEP (n = 64) on Cdyn did not find a significant 

Fig. 4  Forest plot for Cdyn comparing different PEEP strategy groups: (a) LPEEP vs. MPEEP; (b) LPEEP vs. HPEEP; (c) MPEEP vs. HPEEP. Data are presented 
as mean differences and 95% confidence intervals. The vertical line represents no effect with the value of 0. The diamond represents the pooled mean 
effect estimate with 95% CI. It provides an overall measure of the difference in Cdyn values between different PEEP strategy groups. Abbreviations: CI: 
confidence interval; SD: standard deviation; I2: the ratio of excess dispersion to total dispersion; Тau2: the variance of the true effect sizes; Chi2: observed 
weighted sum of squares; df: degrees of freedom; Cdyn: dynamic compliance; LPEEP: low positive end-expiratory pressure group; MPEEP – moderate 
positive end-expiratory pressure group; HPEEP: high positive end-expiratory pressure group
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increase in Cdyn in HPEEP (PEEP 10 mbar) group (+ 3.72 
(-4.52; +12.07) ml/mbar, p = 0.38). We did not find signifi-
cant variability in true effect between studies (T2 = 19.97; 
Chi2 2.12, p = 0.15) may be due to low power. I2 was 53%, 
corresponding to a high proportion of true effect varia-
tion, and sampling error (Fig. 4c). The risk of publication 
bias was low (Fig. S18).

Three studies used driving pressure (DP) as a surro-
gate of respiratory compliance. These studies compared 
PEEP 5 mbar with individual PEEP (iPEEP) (n = 112): one 
of them in gynecology with esophageal-pressure guided 
PEEP; two of them in pelvic robotic surgery (one study 
used an esophageal pressure-guided setting of PEEP [34], 
while another - electrical impedance-guided PEEP [27, 
35]. The meta-analysis of these studies showed a signifi-
cant decrease in DP in iPEEP group (-4.13 (-2.63; -5.63) 
mbar, p < 0.001). We did not find significant variability in 
true effect between studies (T2 = 0.90; Chi2 4.07, p = 0.13) 
may be due to low power. I2 was 51%, corresponding to 
a high proportion of true effect variation, and sampling 
error (Fig. 5). Estimation of the prediction interval of true 
effect also showed very wide distribution crossing zero 
line (Fig. S19). The risk of publication bias was low (Fig. 
S20).

Mean arterial pressure and heart rate
13 studies (n = 974) measured MAP and HR. Meta-anal-
ysis of those studies revealed no significant differences in 
MAP (Fig. 6) or HR (Fig. 7) between any subgroup analy-
sis. Also, these meta-analyses did not find significant 
variability in true effect in all subgroups, and a high pro-
portion of the variation of the effects was possibly due to 
sampling error. Estimating the prediction interval of true 
effect also showed extensive distribution crossing zero 
line (Figs. S21-S28). The risk of publication bias in these 
data was low (Figs. S29-S36).

Influence of the tidal volume and body position during 
surgery on study outcomes (For details see Supplement 1)
Meta-regression for the influence of tidal volume value 
did not find significant influence of tidal volume value 
on PaO2 or PaO2/FiO2 in all comparisons. For details 
see Supplement 1(Figures S37-S41). We found that when 
comparing LPEEP vs. HPEEP, patients in studies using 
tidal volume > 8 ml/kg may have lower dynamic com-
pliance, but not in LPEEP vs. MPEEP comparison (Fig-
ures S42-S43). Also, in only one applicable comparison 
(LPEEP vs. MPEEP) higher tidal volume was associated 
with lower mean arterial pressure, but it did not affect 
the heart rate (Figures S44-S45).

Meta-regression for the influence of body position dur-
ing surgery (Trendelenburg or Reverse Trendelenburg) 
did not find significant influence of body position on 
PaO2 or PaO2/FiO2 in all comparisons (see Supplement 
1, Figures S46-S50). We found that when comparing 
LPEEP vs. HPEEP, patients in studies using Trendelen-
burg position may had lower dynamic compliance, but 
not in LPEEP vs. MPEEP comparison (Figures S51-S52). 
Influence of the body position on MAP and HR was not 
significant (Figures S53-S55).

Discussion
Mechanical ventilation with muscle paralysis during 
anesthesia causes atelectasis, airway closure, and hypox-
emia as a result [39]. These complications may lead to a 
higher risk of PPC [40]. The observational physiological 
study in anaesthetized and paralyzed patients without 
lung disease showed an increase in pleural pressure and 
a decrease in lung compliance in obese patients as com-
pared to non-obese [41]. Laparoscopic surgery results in 
elevated intraabdominal pressure, which can lead to ele-
vation of pleural pressure around 50% of intraabdominal 
pressure [42]. The use of higher PEEP during anesthesia 
with recruitment maneuvers could prevent development 
of atelectasis [43], improve respiratory compliance [44], 
and prevent atelectotrauma [45].

Fig. 5  Forest plot for DP (as a surrogate of Cdyn) comparing MPEEP vs. iPEEP groups. Data are presented as mean differences and 95% confidence inter-
vals. The vertical line represents no effect with the value of 0. The diamond represents the pooled mean effect estimate with 95% CI. It provides an overall 
measure of the difference in DP values between different PEEP strategy groups. Abbreviations: CI: confidence interval; SD: standard deviation; I2: the ratio 
of excess dispersion to total dispersion; Тau2: the variance of the true effect sizes; Chi2: observed weighted sum of squares; df: degrees of freedom;
DP: driving pressure; Cdyn: dynamic compliance; MPEEP: moderate positive end-expiratory pressure; iPEEP: individualized positive end-expiratory pres-
sure group
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Patients who undergo laparoscopic surgery are at high 
risk of postoperative pulmonary complications, including 
atelectasis, pneumonia, and hypoxemia. Thus, a higher 
PEEP strategy in these patients can probably decrease 
the frequency or degree of these complications. This is 
the first systematic review and meta-analysis conducting 
association between different PEEP levels, oxygenation 
and respiratory mechanics during PNP in non-obese lap-
aroscopic surgery patients without lung diseases.

Our meta-analysis included 21 RCTs with 1554 non-
obese patients comparing different PEEP strategies in 
laparoscopic surgery patients. We divided PEEP groups 
as low (ZEEP), moderate (PEEP = 5 mbar), high PEEP 

(PEEP = 10 mbar), and individual PEEP (around 10–12 
mbar after an increase in abdominal pressure).

First, we focused our attention on arterial oxygenation 
as a marker of alveolar collapse. We found heterogene-
ity in the estimation of the arterial oxygenation - smaller 
proportion of studies used PaO2/FiO2, but vast majority 
of them used PaO2 instead, that made the interpretation 
less relevant. In most comparisons higher PEEP signifi-
cantly increased PaO2 or PaO2/FiO2, and we did not find 
variation in true effect (due to low heterogeneity or low 
power). Although the mean effect on PaO2/FiO2 and its 
confidence interval was statistically significant after the 
comparison of low vs. high PEEP, or moderate vs. high 
PEEP, the predictive interval for true effects for low vs. 

Fig. 6  Forest plot for MAP comparing different PEEP strategy groups: (a) LPEEP vs. MPEEP; (b) LPEEP vs. HPEEP; (c) MPEEP vs. HPEEP; (d) MPEEP vs. iPEEP. 
Data are presented as mean differences and 95% confidence intervals. The vertical line represents no effect with the value of 0. The diamond represents 
the pooled mean effect estimate with 95% CI. It provides an overall measure of the difference in MAP values between different PEEP strategy groups. 
Abbreviations: CI: confidence interval; SD: standard deviation; I2: the ratio of excess dispersion to total dispersion; Тau2: the variance of the true effect sizes; 
Chi2: observed weighted sum of squares; df: degrees of freedom; MAP: mean arterial pressure; LPEEP: low positive end-expiratory pressure; MPEEP: mod-
erate positive end-expiratory pressure; HPEEP: high positive end-expiratory pressure group; iPEEP: individualized positive end-expiratory pressure group
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high PEEP had wide range crossing reference line. We 
observed the same picture in studies comparing only 
PaO2. High PEEP level group showed significantly higher 
PaO2 as compared to low PEEP group using mean effect 
and it’s CI, but the wide variance in the predictive inter-
val, crossing the reference line. Of note, these studies 
showed low Chi2, I2 and T2 that means high variation of 
sampling error but not true effects. So, low level of PEEP 
(ZEEP) as compared to moderate, or high PEEP dur-
ing PNP was associated with worse oxygenation. Com-
parison of moderate vs. high PEEP, and moderate vs. 
individualized PEEP (in robotic surgery) showed better 
oxygenation in HPEEP and iPEEP groups with insignifi-
cant variation of true effects between groups (maybe due 

to low power) but wide range of dispersion of true effect 
size.

Second. Comparison of LPEEP vs. MPEEP reveals high 
variability of the true effect and predictive interval of 
Cdyn, in the opposite, HPEEP vs. LPEEP showed a signif-
icant increase in Cdyn with high variation of true effect 
size. We can speculate that PEEP = 5 mbar could be insuf-
ficient to increase lung compliance as compared to ZEEP, 
but HPEEP could improve lung aeration. We think that 
meta-analysis of MPEEP vs. HPEEP was underpowered 
to detect any changes in Cdyn. But similar meta-analy-
sis compared MPEEP vs. iPEEP in pelvic surgery, that is 
close to HPEEP value, revealed a significant decrease in 
DP, corresponding to the increase of the respiratory com-
pliance, but also high true effect variation.

Fig. 7  Forest plot for HR comparing different PEEP strategy groups: (a) LPEEP vs. MPEEP; (b) LPEEP vs. HPEEP; (c) MPEEP vs. HPEEP; (d) MPEEP vs. iPEEP. 
Data are presented as mean differences and 95% confidence intervals. The vertical line represents no effect with the value of 0. The diamond represents 
the pooled mean effect estimate with 95% CI. It provides an overall measure of the difference in HR values between different PEEP strategy groups. Ab-
breviations: CI: confidence interval; SD: standard deviation; I2: the ratio of excess dispersion to total dispersion; Тau2: the variance of the true effect sizes; 
Chi2: observed weighted sum of squares; df: degreeы of freedom; HR: heart rate; LPEEP: low positive end-expiratory pressure group; MPEEP: moderate 
positive end-expiratory pressure group; HPEEP: high positive end-expiratory pressure group; iPEEP: individualized positive end-expiratory pressure group
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A decrease in respiratory compliance, as well as an 
increase in its inverse value (known as driving pressure), 
may reflect overdistension (strain) of the lungs during 
mechanical ventilation [46]. Lung overdistension due to 
high PEEP or high tidal volume may damage lung tissue 
and impair pulmonary microcirculation [47]. In a sec-
ondary analysis of RCTs elevated driving pressure was 
found as a predictor of mortality in ARDS patients [48]. 
In a large retrospective study higher mechanical power 
due to higher DP led to a greater risk of postoperative 
respiratory failure requiring intubation in elective sur-
gical patients under general anesthesia [49]. Our meta-
analysis and meta-regression for the influence of the tidal 
volume on study outcomes have found important results 
that not HPEEP per se, but combination of HPEEP with 
tidal volume above 8 mL/kg may decrease compliance 
and MAP. Moreover, the meta-analysis found that iPEEP 
(generally higher than HPEEP) as compared to LPEEP 
during PNP reduced DP and did not affect MAP in all 
studies without significant variability of true effect, i.e. 
did not lead to overdistension despite of high values of 
PEEP.

Third. There were no significant differences in hemo-
dynamic parameters between groups in meta-analyses. 
However, the probability of sampling error in hemody-
namic parameters was high, and predictive intervals were 
wide, so the results should be interpreted with caution. 
Though we did not find the influence of PEEP strategy on 
hemodynamics, meta-regression analysis revealed that 
tidal volume > 8 mL/kg may affect MAP.

Forth. Our study revealed heterogeneity between stud-
ies concerning tidal volume and body position. Clini-
cal implications of meta-regression can be summarized 
as follows: combination of MPEEP or HPEEP with tidal 
volumes more than 8 mL/kg may decrease respiratory 
compliance and decrease MAP; in the opposite, low tidal 
volume strategy in these PEEP strategies may be safe in 
relation to respiratory mechanics and hemodynamics; 
also, combination of Trendelenburg position with HPEEP 
may decrease respiratory compliance.

Most of the recent meta-analyses concerning PEEP lev-
els in abdominal surgery focused on PPCs, hypoxemia, 
and hypotension. A recent meta-analysis including 63 
trials in non-cardiac surgery found that lung-protective 
ventilation (low tidal volume with PEEP) results in a 
decrease in pulmonary complications, but failed to find 
a beneficial effect of higher PEEP as compared to lower 
PEEP (around 5 mbar) on PPC [50]. Meta-analysis of 
three large multicenter RCTs (PROVHILO, iPROVE and 
PROBESE) compared low versus high PEEP in non-car-
diothoracic and non-neurological surgery showed fewer 
episodes of desaturation but more frequent intraop-
erative hypotension, and no effect in PPCs in the higher 
PEEP group [51]. Of note, included trials had several 

limitations. For example, PROVHILO trial excluded 
patient with obesity and laparoscopic surgery [52], 
PROBESE trial compared fixed level of PEEP 12 mbar 
(versus PEEP 4 mbar in control group) in patients with 
BMI > 40  kg/m2 who underwent predominantly lapa-
roscopic abdominal surgery [53]. In spite of abovemen-
tioned limitations, in this meta-analysis in subgroup 
of laparoscopic surgery PPCs were significantly lower. 
Recent meta-analyses comparing individualised PEEP 
with other strategies in abdominal surgery showed bet-
ter oxygenation, higher respiratory compliance, and less 
PPCs in the individualized PEEP groups [14, 54]. Indi-
vidualized PEEP could have impact on PPCs in one-lung 
ventilation. These results correspond to our meta-analy-
sis that failed to show superiority of HPEEP over MPEEP. 
Recent meta-analysis of 8 trials in thoracic surgery 
patients showed that individual PEEP during one-lung 
ventilation was associated with fewer postoperative pul-
monary complications and better perioperative oxygen-
ation [55].

Our study includes important limitations. First, it 
concerns heterogeneity of surgical site and duration of 
the operation, so some clinically important subgroups 
remained small. Second, included studies used hetero-
geneous measures of oxygenation, and respiratory com-
pliance as well as different PEEP levels, body positions 
and tidal volumes. Third, some meta-analyses could be 
underpowered and had high risk of publication bias. 
Forth, we did not focus on PPCs. Lastly, according to het-
erogeneity, a network meta-analysis design would have 
been more appropriate.

We can mention some study strengths. We selected 
only non-obese patients with PNP, eliminating the effect 
of obesity on oxygenation and respiratory compliance. 
We used predictive intervals to show a real variation of 
the true effects. Also, we performed meta-regression to 
separate the influence of tidal volume and body position 
from PEEP strategies.

Conclusions
HPEEP and iPEEP during PNP in non-obese patients 
could promote oxygenation and increase Cdyn without 
clinically significant changes in MAP and HR. MPEEP 
could be insufficient to increase respiratory compliance 
and improve oxygenation. LPEEP may lead to decreased 
respiratory compliance and worsened oxygenation.
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